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CHARACTERISTICS OF BILE ACIDS 
According to the hydrophilic-hydrophobic index, the bile acids are divided into hydrophilic and 

hydrophobic ones (table 1) (1-3).  
Table 1.

Hydrophilic-hydrophobic index (HHI) of bile acids in mammals (2). 
Bile acids HHI of bile acids Mammals 

β-Hyocholic acid (β-HCA) −0.60 rats 
α-Muricholic acid (α-MCA) −0.51 rats 
β- Muricholic acid (β-MCA) −0.40 rats 
Murideoxycholic acid (МDCA) −0.33 rats 
Ursodeoxycholic acid (UDCA) −0.17 bears 
α-Hyocholic acid (α-HCA) −0.03 pigs 
Hyodeoxycholic acid (HDCA) +0.09 pigs 
Cholic acid (CA) +0.23 human 
Chenodeoxycholic acid (CDCA) +0.83 human 
Deoxycholic acid (DCA) +0.98 human, primates, rabbits 
Lithocholic acid (LCA) +1.23 human 

 
If the hydrophobic index is less than that of cholic acid (CA), the bile acids are hydrophilic, if 

it is more than the hydrophobic index, they are hydrophobic (1-3). The primary bile acids are more 
hydrophilic than the secondary ones, but the taurine conjugates of the bile acids are more hydro-
philic than the glycine ones (1-3). The hydrophilic bile acids have hepatoprotective properties [mu-
richolic (MCA) > ursodeoxycholic (UDCA) > cholic (CA)] (4, 5). The hydrophobic bile acids are 
hepatotoxic [lithocholic (LCA) > deoxycholic (DCA) > chenodeoxycholic (CDCA) > CA] (1-7). De-
pending on the concentration, the hydrophobic bile acids cause cholestasis (LCA > DCA), necrosis 
(LCA > DCA) or apoptosis of hepatocytes (LCA > DCA > CDCA) (2-7).  

 
Furthermore, DCA is cancerogenic (8). Experiments on animals showed that it causes can-

cer of the colon (9). The hydrophilic bile acids prevent the development of cholestasis or necro-
sis/apoptosis of hepatocytes (UDCA, MCA), as well as cancer of the colon (UDCA) (4-7, 9). 

 
In serum up to 40% of bile acids are transported with HDL, up to 15% with LDL (10). The 

mechanism of binding of bile acids with lipoproteins depends on their hydrophobic index (CDCA > 
DCA > UDCA > CA > 7-epicholic acid) (10). In the liver, 60-80% of bile acids are uptake during one 
passage of portal blood (11). In earlier experiments on hamsters, it was demonstrated that the he-
patic LDL uptake could influence the bile flow rate, the biliary secretion of bile acids and cholesterol 
(12, 13). The composition and concentration of bile acids participating in the enterohepatic circula-
tion can modulate the LDL receptor activity and the receptor-dependent LDL uptake in the liver. 
More hydrophilic UDCA stimulates the receptor-dependent LDL uptake in the liver, but more hy-
drophobic CDCA decreases the LDL receptor activity (12, 13). It was also shown that the addition 
of hydrophobic CDCA to the hypercholesterolemic diet reduces the decrease of HDL concentration 
in serum, but the addition of hydrophilic UDCA causes the opposite effect (14, 15).  

 
In hepatocytes, the bile acids may inhibit the activity of HMG-CoA reductase and cholesterol-

7α-hydroxylase, depending on their concentration and hydrophobic index (DCA > CDCA > CA > 
UDCA) (2, 16-18). The hydrophilic bile acids stimulate the secretion of the hepatic bile (UDCA > 
CA), the hydrophobic ones lower it (LCA > DCA > CDCA) (19-21). UDCA and CDCA reduce the 
secretion of biliary cholesterol in the hepatic bile, but CA and DCA raise it (1, 19-21). In the gall-
bladder bile, the hydrophobic bile acids form mixed (bile acid-phospholipid-cholesterol) and simple 
(bile acid-cholesterol) micelles (DCA > CDCA > CA), but the hydrophilic bile acids form liquid crys-
talline lamellas (MCA > UDCA); that is, the lower the hydrophobic index of bile acids, the lower the 
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ability to form micelles (22-25). 
 
In the ileum, CA and CDCA raise the absorption of cholesterol, but UDCA and DCA reduce it 

(26-29). During the process of enterohepatic circulation, in the ileum and the colon, anaerobic bac-
teria promote 7α-dehydroxylation of the primary bile acids (hyocholic (HCA), MCA, CA, CDCA) and 
the formation of the secondary bile acids (hyodeoxycholic (HDCA), murideoxycholic (MDCA), DCA, 
LCA) (1, 2, 30, 31). The secondary bile acids are more hydrophobic than the primary ones (HDCA 
> HCA, MDCA > MCA, DCA > CA, LCA > CDCA) (1-3). The secondary bile acids are usually 
poorly absorbed in the ileum and the colon and are excreted with feces (1-3). 

 
The mechanism of “lithogenic” bile formation 

In patients with chronic calculous cholecystitis, there is a marked increase of the COX-2 ex-
pression. Previously, we had demonstrated the increased COX-2 expression in the gallbladder wall 
in the gallbladder specimens which were obtained from 21 patients with chronic calculous chole-
cystitis after cholecystectomy (32). 

An increase of COX-2 expression in the gallbladder wall (n=21) was observed in 86% of the 
smooth muscle cells, in 81% of the epithelial cells, in 71% of the vascular smooth muscle cells, in 
57% of the stromal cells and in 37% of the Rokitansky-Aschoff sinuses (32). 

At mild degree of inflammation in the gallbladder wall (n=12),  the COX-2 expression was in-
creased in 83% of the epithelial cells, in 78% of the vascular smooth muscle cells, in 75% of the 
smooth muscle cells, in 33% of the stromal cells and in 17% of the Rokitansky-Aschoff sinuses.  

At moderate and severe degree of inflammation in the gallbladder wall (n=9),  the COX-2 ex-
pression was increased in 100% of the smooth muscle cells, in 89% of the vascular smooth muscle 
cells, in 78% of the epithelial cells, in 78% of the stromal cells and in 67% of the Rokitansky-
Aschoff sinuses. 

Positive correlations exist between the degree of inflammation in the gallbladder wall and the 
degree of COX-2 expression in the smooth muscle cells (r= +0.71, p<0.001) and in the vascular 
smooth muscle cells (r= +0.51, p<0.001). 

In 8 gallbladder specimens with gastric metaplasia, an increase of COX-2 expression was 
seen in 100% of the epithelial cells, in 87% of the smooth muscle cells, in 75% of the vascular 
smooth muscle cells, in 63% of the stromal cells and in 37% of the Rokitansky-Aschoff sinuses. In 
this group, a positive correlation was seen between the degree of inflammation in the gallbladder 
wall and the degree of COX-2 expression in the stromal cells (r= +0.72, p<0.05).  

 
In 13 gallbladder specimens without metaplasia, an increased COX-2 expression was deter-

mined in 85% of the smooth muscle cells, in 69% of the epithelial cells, in 69% of the vascular 
smooth muscle cells, in 54% of the stromal cells and in 38% of the Rokitansky-Aschoff sinuses. In 
this group, a positive correlation was revealed between the degree of inflammation in the gallblad-
der wall and the degree of COX-2 expression in the smooth muscle cells (r= +0.82, p<0.05). 

In patients with chronic calculous cholecystitis, a negative correlation was revealed between 
the absorption function of gallbladder and the thickness of the gallbladder wall (r= −0.71, p<0.05) 
(33).  

Obtained data demonstrate: 
1. The excessive COX-2 expression in the smooth muscle cells, in the vascular smooth muscle 

cells and in the epithelial cells of the gallbladder may be the cause of chronic aseptic inflam-
mation, of the decrease of water absorption and of the decrease of hepatic bile “passage” 
into the gallbladder up to 35%. 

2. The excessive COX-2 expression in the smooth muscle cells may be the cause of gallblad-
der hypomotility and biliary pain.  
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3. The excessive COX-2 expression in the smooth muscle cells, in the vascular smooth muscle 
cells and in the epithelial cells of the gallbladder may be the cause of increased thickness of 
the gallbladder wall.  

4. The excessive COX-2 expression in the epithelial cells of the gallbladder may be the cause 
of hypersecretion of the biliary glycoprotein mucin into the gallbladder lumen and of increase 
of the biliary glycoprotein mucin concentration in the gallbladder bile.  
 
Taking account the fact that the excessive COX-2 expression in the smooth muscle cells, in 

the vascular smooth muscle cells and in the epithelial cells of the gallbladder may appear at the 
early stage of the development of cholecystolithiasis, then the excessive COX-2 expression in the 
smooth muscle cells, in the vascular smooth muscle cells and in the epithelial cells of the gallblad-
der may be the physical cause of appearance of the chronic intrahepatic “bland” cholestasis and 
the “lithogenic” gallbladder bile formation: 

1) to decrease of water absorption by the epithelial cells of mucous gallbladder and to pro-
mote the reduce of the hepatic bile inflow into the gallbladder (the limitation of “passive” passage of 
the hepatic bile) and to promote the reduce of the total bile acids concentration in the gallbladder 
bile;  

2) to decrease of vesicular cholesterol absorption by the epithelial cells of mucous gallblad-
der and to promote the increase of cholesterol concentration in the phospholipid vesicles in the 
gallbladder bile;  

3) to decrease of hydrophilic proteins absorption by the epithelial cells of mucous gallbladder 
and to promote the increase of hydrophilic proteins concentration in the gallbladder bile.  

 
This process is accompanied by the increase of the vesicular cholesterol/total bile acids ratio 

and by the increase of the total biliary proteins/total bile acids ratio and it promote the rise of the 
rate of cholesterol monohydrate crystals precipitation on the epithelial cells of mucous gallbladder. 

Hence, than the less is the absorption of vesicular cholesterol by the epithelial cells of mu-
cous gallbladder, then the higher is the cholesterol concentration in the gallbladder bile and the 
less is the nucleation time of cholesterol monohydrate crystals in the gallbladder bile, and vice 
versa. Hence, the excessive COX-2 expression in the epithelial cells of the gallbladder decreases 
the absorption and concentration functions of the gallbladder and promotes the “lithogenic” gall-
bladder bile formation. The decrease of the evacuation function of the gallbladder (the excessive 
COX-2 expression in the smooth muscle cells) is the predisposing factor for the precipitation of 
cholesterol monohydrate crystals and for the formation of cholesterol gallstones (fig. 5). 

 

The excessive COX-2 expression in the epithelial cells of the gallbladder
may be the cause of hypersecretion of the biliary glycoprotein mucin into 

the gallbladder lumen and of decreased absorption:
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Fig. 5. Mechanism of the “lithogenic” gallbladder bile formation. 
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The decrease of hepatic bile “passage” into the gallbladder promote the hepatic bile “pas-
sage” into the duodenum and increase the frequency of the gallbladder-independent enterohepatic 
circulation of bile acids and stimulate the formation of the hydrophobic hepatotoxic deoxycholic bile 
acid (DCA) (10, 34, 35). 

 
The increase of the frequency of the gallbladder-independent enterohepatic circulation of bile 

acids and the increase of hydrophobic hepatotoxic deoxycholic bile acid concentration in the hepa-
tocytes reduce the bile-acid-independent secretion of hepatic bile and stimulate the chronic intra-
hepatic “bland” cholestasis formation (36, 37). Hence, the decrease of hepatic bile “passage” into 
the gallbladder and, respectively, the increase of hepatic bile “passage” into the duodenum is the 
cause of the increased frequency of the gallbladder-independent enterohepatic circulation of bile 
acids and of the appearance of the chronic intrahepatic “bland” cholestasis. 

 
The chronic intrahepatic “bland” cholestasis is accompanied by the reduction of secretion 

volume of hepatic bile and by the rise of biliary cholesterol, total bile acids and total biliary protein 
concentration in the hepatic bile (fig. 6) (38, 39). The increase of biliary cholesterol concentration in 
the hepatic bile promote the rise of the biliary cholesterol concentration in phospholipid vesicles (r= 
+0.59, p<0.05) (40). The increase of total bile acids concentration in the hepatic bile reduces the 
stability of phospholipid vesicles and shortens the nucleation time of cholesterol monohydrate crys-
tals (r= −0.53, p<0.05) (40).  

We suppose that the chronic intrahepatic “bland” cholestasis, reducing the secretion rate and 
the hepatic bile volume, promotes the rise of biliary cholesterol, total bile acids and total biliary pro-
tein concentration in the hepatic bile, and shortens the nucleation time of cholesterol monohydrate 
crystals, what predispose to the “lithogenic” hepatic bile formation. 

The decrease of absorption, concentration and evacuation functions of the gallbladder pro-
mote the “lithogenic” gallbladder bile formation, the chronic intrahepatic “bland” cholestasis pro-
mote the “lithogenic” hepatic bile formation (fig. 5, 6). These two factors determine the cholesterol 
gallstones formation. 

In patients with chronic acalculous cholecystitis with biliary sludge, the formation of choles-
terol gallstones is promoted by the decrease of absorption (the decrease of the water and phos-
pholipid vesicles absorption), concentration (the decrease of total bile acids concentration in gall-
bladder bile) and evacuation (the decrease of the gallbladder-dependent output of biliary choles-

Рис. 6. Mechanism of the “lithogenic” hepatic bile formation. 
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terol) functions and by the increase of secretion (hypersecretion of glycoprotein mucin by the gall-
bladder mucosa) function of the gallbladder (fig. 7) (41).  

 
The decrease of the water absorption rate of in the gallbladder wall limits the “passive” pas-

sage of the hepatic bile into the gallbladder and increases the hepatic bile passage into the duode-
num (fig. 8) (41-43). 

 
The decrease of the evacuation function of the gallbladder reduces the “active” passage of 

the hepatic bile into the gallbladder (44, 45). This process is accompanied by the decrease of the 
total bile acids concentration and the increase of the biliary cholesterol concentration in phosphol-
ipid vesicles and it also promotes the increase of time for precipitation of cholesterol monohydrate 
crystals and the formation of cholesterol gallstones (fig. 9) (46-50). 

The excessive hepatic bile passage from the liver into the duodenum increases the fre-
quency of the gallbladder independent enterohepatic circulation of bile acids. The gallbladder-
independent enterohepatic circulation of bile acids in patients with the cholesterol gallstone dis-
ease (CGD) or after cholecystectomy is raised (fig. 10).  

 
It results in: 1) the increase of the hydrophobic hepatotoxic DCA formation (table 3) and its 

accumulation in hepatocytes (51), 2) the formation of morphological changes in the liver (nonspe-
cific reactive hepatitis) (52) and 3) the appearance of cholestasis (53).  

Fig. 7.  Exchange of cholesterol and bile 
acids in patients with chronic acalculous 
cholecystitis and chronic calculous chole-
cystitis. 1 = synthesis of cholesterol;  
2 = synthesis of cholesterol esters for 
VLDL; 3 = hydrolysis of cholesterol esters 
entered the hepatocytes with HDL and 
LDL, and hydrolysis of cholesterol esters 
entered the hepatocytes with CMR;  
4 = synthesis of bile acids.  
ChE = cholesterol esters;  
ChA = cholesterol anhydrous;  
ChM = cholesterol monohydrate;  
BA = bile acids; HA = hepatic artery;  
HV = hepatic vein; PV = portal vein;  
LD = lymphatic duct. 

ChA

1
3

2
3 3

HMG-CoALDL

CMR

Bile

ChE VLDL

ChM

BA
BA

ChM

PV

PV

HA HV

HA

LD
ChA

HDL
Cholesterol

4

Liver

Gallbladder

Stomach Duodenum Ileum

Bile acids

ChA

1
3

2
3 3

HMG-CoALDL

CMR

Bile

ChE VLDL

ChM

BA
BA

ChM

PV

PV

HA HV

HA

LD
ChA

HDL
Cholesterol

4

Liver

Gallbladder

Stomach Duodenum Ileum

Bile acids

ChA

1
3

2
3 3

HMG-CoALDL

CMR

Bile

ChE VLDL

ChM

BA
BA

ChM

PV

PV

HA HV

HA

LD
ChA

HDL
Cholesterol

4

Liver

Gallbladder

Stomach Duodenum Ileum

Bile acids

 
 
 
 
 
Fig. 8. “Passive” passage of hepatic 
bile into the gallbladder and into the 
duodenum in patients with chronic acal-
culous cholecystitis with biliary sludge.  
1 = Unconcentrated hepatic bile;  
2 = low concentrated gallbladder bile.
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The risk of cancer of the liver, the pancreas, the small intestine, and the colon increases as 

well (54-62). The increases of DCA, participating in the enterohepatic circulation, and of other toxic 
agents in the hepatic bile can result in chronic pancreatitis and duodeno-gastral reflux (63-66). 
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